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Abstract A new method is developed in this paper to

deal with the thermomechanical response of continuous

fiber-reinforced composites. Treating the matrix as an

elastic-perfectly plastic solid, the analytical formulae of the

deformations and stresses of the matrix are obtained from

the plasticity theory, axisymmetric equilibrium equation,

and stress–strain and strain–displacement relations. The

fiber is taken to be an anisotropic, elastic material, and the

formulae calculating its deformations and stresses are also

presented. The boundary conditions and the consistence of

deformations and stresses between the fiber and matrix,

and between elastic and plastic regions of the matrix are

employed to determine the unknown constants in the

analytical formulae. With the developed method, the

thermomechanical stress distributions in composites rein-

forced with circumferentially orthotropic, radially ortho-

tropic and transversely isotropic fibers are investigated, and

how the elastic-perfectly plastic property and different

materials of the matrix affect the thermomechanical

response of the composites is discussed. For the thermo-

mechanical loads and composite systems given in this

paper, the elastic-perfectly plastic property of the matrix

can reduce the compressive stresses in the fiber, and the

tensile circumferential and axial stresses in the matrix.

A strong matrix can raise the compressive stresses in the

fiber, and the tensile circumferential and axial stresses in

the matrix.

Introduction

Due to different material properties of the constituents of

the composites reinforced with continuous fibers, different

deformations of the constituents will occur for the com-

posites subjected to thermal or thermomechanical loads

induced during processing or in-service exposure. They

may cause large thermal or thermomechanical stresses and

lead to composite failure or property degradation. There-

fore, thermal or thermomechanical analysis of the com-

posites has attracted a lot of attentions and some methods

have been developed.

The concentric cylindrical model is the most popular

one used in thermal and thermomechanical analyses of

fibrous composites. Early in 1980, this model was

employed to deal with the static problem of the linear

theory of thermoelasticity for a composite cylinder by

Iesan [1]. Using such a concentric cylinder model, Mikata

and Taya investigated stress fields in a coated continuous

fiber composite under thermomechanical loading [2].

Based on the Eshelby’s method, Arsenault and Taya con-

structed a theoretical model to predict the thermal residual

stresses in metal matrix composites [3]. Extending two-

and four-concentric cylinder elastic models to a multi layer

coaxial-cylinder elastic model, Warwick and Clyne carried

out thermal stress analysis of SiC monofilament systems

[4]. Using a three-phase cylinder model consisting of an

inner fiber, middle interphase and outer matrix, Gardner
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et al. examined how different Young’s moduli of the

interphase affect residual thermal stresses in filamentary

polymer-matrix composites containing an elastomeric

interphase [5, 6]. These research studies modeled the

coating or interphase as a homogeneous region. However,

the actual interphases may have spatial property variations.

Using three different expressions to simulate the Young’s

modulus variations in the interphase and still taking the

Poisson’s ratio and thermal expansion coefficient to be

constants, Jayaraman and Reifsnider discussed the effect of

continuously varying Young’s modulus in the fiber/matrix

interphase on thermal residual stresses [7, 8]. Assuming the

fibers to be arranged in a regular array in the matrix and

employing the ADINA finite element package, Szysz-

kowski and King analyzed the thermal stress concentra-

tions at the surface of the composites [9].

When the thermal deformations are large enough, one or

more constituents of the composites may plastically yield. In

order to tackle the plastic deformations of the composites

under thermal or thermomechanical loads, the stress analysis

of the composites subjected to thermal or thermomechanical

loads was extended from full elasticity to plasticity. Based

on von Mises’ yield criterion, Zhang et al. developed an

axisymmetric model for the thermally induced stresses and

strains in a continuous fiber-reinforced composite with a

plastic matrix and obtained two partial differential equations

describing the deformations of the composites which must

be solved iteratively [10]. Choo et al. presented a finite

element analysis method to determine thermal residual

stresses in continuous-fiber-reinforced composites [11].

Analytical expressions of deformations and stresses of the

fibrous composites subjected to thermal or thermomechan-

ical loads are simpler and more profound in the prediction of

the thermal or thermomechanical response of the compos-

ites. An analytical method was developed by You et al.

to cope with the plastic deformations of coating and

matrix [12, 13].

The above work treated the constituent materials of the

composites as fully elastic or elastic–plastic with a strain–

hardening behaviour. However, many materials, having

been used as some constituents of the composites, exhibit an

elastic-perfectly plastic behaviour. For the composites con-

taining such constituent materials, new approaches must be

developed to perform their stress analysis. In this paper, the

matrix of the composites is treated as an isotropic, elastic-

perfectly plastic solid. Tresca’s yield criterion in plasticity is

employed to derive the deformations and stresses of the

matrix. The fiber is taken as an anisotropic, elastic solid. The

analytical formulae of its thermomechanical deformations

and stresses are obtained from the theory of anisotropic

elasticity. The resolution equations of the composites con-

sisting of such a matrix and fiber are derived from the

boundary conditions, the consistence of deformations and

stresses at the interfaces between the fiber and matrix, and

between elastic and plastic regions of the matrix. By solving

these equations, all unknown constants in the analytical

formulae are determined. Using the developed method, we

investigate the stresses in the composites reinforced with

circumferentially orthotropic, radially orthotropic and

transversely isotropic fibers subjected to axisymmetric

thermomechanical loads and discuss how different matrices

affect the thermomechanical response of the composites.

Analytical formulae of deformations and stresses

The composites to be studied consist of continuous aniso-

tropic fibers and an elastic-perfectly plastic matrix. Subject

to axisymmetric thermomechanical loads, the composites

can be simplified as a two-phase concentric cylinder model

as shown in Fig. 1 where rf and rm represent the outer radii

of the fiber and matrix, respectively.

When the deformation of the matrix is big enough, it may

become plastic yield. In the theory of plasticity, there are

usually two plastic yield criteria: Tresca’s yield criterion and

von Mises’ yield criterion. In order to reach an analytical

mathematical expression of deformations and stresses of the

composites subject to axisymmetric thermomechanical

loading, we here employ Tresca’s yield criterion to derive

the governing equation. When using Tresca’s yield criterion,

the maximum and minimum normal stresses must be known.

It is often impossible before we obtain the stress distribution

in the composites. However, since three normal stress

components only have six different combinations, we can

use Tresca’s yield criterion to derive the governing equations

z 

fr

mr

r
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Fig. 1 The concentric cylinder model of continuous fiber-reinforced

composites
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for all the stress combinations. For example, we assume that

the circumferential stress is the largest and the radial stress is

the smallest. Tresca’s yield criterion for this stress combi-

nation can be written as

rh � rr ¼ ry ð1Þ

where rh, rr and ry are the circumferential, radial and yield

stresses of the matrix, respectively.

Under axisymmetric thermomechanical loads, the defor-

mations and stresses in the composite model are axisym-

metric. Without considering the effect of shear stresses, the

stress equilibrium equations for this case have the forms of

r
drr

dr
þ rr � rh ¼ 0

drz

dz
¼ 0

ð2Þ

where rz is the axial stress, and r is the radial coordinate.

The second of Eq. 2 gives

rz ¼ c1 ð3Þ

where c1 is an unknown constant.

Substituting Eq. 1 into the first of Eq. 2, we obtain a first

order ordinary differential equation, its resolution gives the

radial stress as follows

rr ¼ ry ln r þ c2 ð4Þ

where c2 is an unknown constant.

The substitution of the radial stress (4) into Tresca’s

yield criterion (1) gives the following circumferential stress

rh ¼ ryð1þ ln rÞ þ c2 ð5Þ

For an isotropic, elastic solid, the relationships between

the strains and stresses can be described with Hooke’s law

which have the forms of

ee
r ¼

1

E
rr � mðrh þ rzÞ½ �

ee
h ¼

1

E
rh � mðrr þ rzÞ½ �

ee
z ¼

1

E
rz � mðrh þ rrÞ½ �

ð6Þ

where E is Young’s modulus, m is Poisson’s ratio, and er
e, eh

e

and ez
e are radial, circumferential and axial elastic strains,

respectively.

Subjected to axisymmetric thermomechanical loads, the

total deformations of the matrix after yielding can be

divided into elastic, plastic and thermal ones, i.e.,

er ¼ ee
r þ ep

r þ et
r

eh ¼ ee
h þ ep

h þ et
h

ez ¼ ee
z þ ep

z þ et
z

ð7Þ

where the superscripts e, p and t represent the elastic,

plastic and thermal strains, respectively.

According to Eq. 1, Tresca’s yield function f is

f ¼ rh � rr � ry ð8Þ

From the plastic potential theory [14], the relations

among the plastic stain components can be derived from

Eq. 8 and can be written as

ep
r ¼ �ep

h

ep
z ¼ 0

ð9Þ

For an isotropic solid, the thermal expansion coefficient

along the three orthogonal directions is the same and the

thermal strains can be determined with the formula

et
r ¼ et

h ¼ et
z ¼ aDT ð10Þ

where a is the thermal expansion coefficient of the matrix,

and DT is a uniform temperature change.

Substituting Eqs. 6, 9 and 10 into 7, then superimposing

the total radial, circumferential and axial strains, the fol-

lowing relation is obtained

er þ eh þ ez ¼
1� 2m

E
ðrr þ rh þ rzÞ þ 3aDT ð11Þ

For axisymmetric deformations, the strain components

are related to the displacement components with the fol-

lowing equations

er ¼
du
dr

eh ¼
u
r

ez ¼
dw
dz

ð12Þ

where u and w are the radial and axial displacements,

respectively.

Substituting the axial stress (3), radial stress (4) and

circumferential stress (5) into the third of Eq. 6, the

elastic axial strain is obtained. Substituting the elastic

axial strain, the second of Eq. 9 and the thermal strain

(10) into the third of Eq. 7, we obtain the total axial

strain ez. Substituting the total axial strain ez into the

third of Eq. 12 and integrating, the axial displacement is

found to be
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w ¼ 1

E
c1 � mryð1þ 2 ln rÞ � 2mc2

� �
zþ aDTzþ c3 ð13Þ

where c3 is an unknown constant.

Substituting the stress components (3), (4) and (5) into

Eq. 11 and making use of the relationships (12) between

the strains and displacements, the following first order

ordinary differential equation is obtained

du
dr
þ u

r
¼ 1� m

E
ryð1þ 2 ln rÞ � 2m

1� m
c1 þ 2c2

� �
þ 2aDT

ð14Þ

By solving the above equation, the radial displacement

is determined as follows

u ¼ 1� m
E

� m
1� m

c1 þ c2 þ ry ln r
� �

r þ c4r�1 þ aDTr

ð15Þ

where c4 is an unknown constant.

For the elastic deformation of the matrix, the radial and

axial displacements, and the radial, circumferential and

axial stresses can be derived from the relationships

between strains and displacements (12) and between strains

and stresses (6) together with the equilibrium Eq. 2. They

have the forms of [15]

u ¼ c6r þ c7r�1 ð16Þ

w ¼ 1

1� m
1� m� 2m2

E
c5 � 2mc6 þ ð1þ mÞaDT

� �
zþ c8

ð17Þ

rr¼
m

1�m
c5þ

E
1�m

c6�
E

1þm
c7r�2� E

1�m
aDT

rh¼
m

1�m
c5þ

E
1�m

c6þ
E

1þm
c7r�2� E

1�m
aDT

rz¼ c5

ð18Þ

where c5, c6, c7 and c8 are the unknown constants.

For the elastic deformations of anisotropic fibers whose

material property symmetry has two orthogonal planes, the

equilibrium Eq. 2 and geometric Eq. 12 keep unchanged.

However, the stress–strain relation (6) must be replaced

with the following equations [16]

rr ¼ crr er � arDTð Þ þ crh eh � ahDTð Þ þ crz ez � azDTð Þ
rh ¼ chr er � arDTð Þ þ chh eh � ahDTð Þ þ chz ez � azDTð Þ
rz ¼ czr er � arDTð Þ þ czh eh � ahDTð Þ þ czz ez � azDTð Þ

ð19Þ

where cij(i, j=h, r, z) represent the stiffness coefficients, and

ar, ah and az are the thermal expansion coefficients of the

fiber along radial, circumferential and axial directions,

respectively.

The radial and axial displacements and radial, cir-

cumferential and axial stresses in the fiber can also be

obtained from Eqs. 2, 12 and 19 which can be written as

[17, 18]

u ¼ c9Ar þ c10rkf 1 þ c11rkf 2 þ Br ð20Þ

w¼
"

1�Aðczhþ czrÞ
czz

c9�
Bðczhþ czrÞ

czz

� c10

czz
ðczhþkf 1czrÞrkf 1�1�c11

czz
ðczhþkf 2czrÞrkf 2�1

þ 1

czz
ðczhahþ czrarþ czzazÞDT

#

zþ c12

ð21Þ

rr ¼c9

crz

czz

�
þ A crh þ crr �

crz

czz
ðczh þ czrÞ

� ��
þ c10 crh½

þ kf 1crr �
crz

czz
ðczh þ kf 1czrÞ�rkf 1�1

þ c11 crh½ þ kf 2crr �
crz

czz
ðczh þ kf 2czrÞ�rkf 2�1

þ B crh þ crr �
crz

czz
ðczh þ czrÞ

� �
þ

crz

czz
ðczhah

�
þ czrarÞ � ðcrhah þ crrarÞ�DT

rh ¼c9

chz

czz

�
þ A chh þ chr �

czh

czz
ðchz þ czrÞ

� ��

þ c10 chh½ þ kf 1chr �
czh

czz
ðchz þ kf 1czrÞ�rkf 1�1

þ c11 chh½ þ kf 2chr �
czh

czz
ðchz þ kf 2czrÞ�rkf 2�1

þ B chh þ chr �
czh

czz
ðchz þ czrÞ

� �

þ chz

czz
ðczhah

�
þ czrarÞ � ðchhah

þ chrarÞ�DT

rz ¼ c9

ð22Þ

where

and c9, c10, c11 and c12 are unknown constants.
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For the perfect bonding at the interface between the fiber

and matrix, the deformations of the fiber and matrix at this

interface must be the same. The radial stresses of the fiber

and matrix at this interface must keep continuous. In

addition, the deformations and stresses at the interface

between the elastic and plastic regions of the matrix must

be the same as well. Taking the axisymmetric mechanical

loads to be an externally applied radial stress rr0 and an

externally applied axial stress rz0, these conditions of

deformations and stresses together with the boundary

conditions of the composites can be written as

uf is a bounded value at r ¼ 0

wzf ¼ wp
zm ¼ we

zm ¼ 0 at z ¼ 0

uf ¼ up
m wzf ¼ wp

zm rrf ¼ rp
rm at r ¼ rf

up
m ¼ ue

m wp
zm ¼ we

zm rp
rm ¼ re

rm rp
hm ¼ re

hm at r ¼ rn

re
rm ¼ rr0 at r ¼ rm
Rrf

0

rzf rdrþ
Rrn

rf

rp
zmrdrþ

Rrm

rn

re
zmrdr ¼

Rrm

0

rz0rdr

ð24Þ

where rn is the interface radius between the elastic and

plastic regions of the matrix, the superscripts e and p

represent elastic and plastic regions, the subscripts f and m

stand for the fiber and matrix, and the subscripts r, h and z

indicate the radial, circumferential and axial directions,

respectively.

Substituting the radial and axial displacements, and

radial, circumferential and axial stresses of the fiber and

matrix into Eq. 24, we obtain 13 linear algebra equations.

Their resolution determines 13 unknown constants c1–c12

and the interface radius rn between the elastic and plastic

regions of the matrix.

Numerical applications

Using the above-developed analytical method, in this sec-

tion, we investigate the thermomechanical stresses in the

composites comprising an anisotropic fiber and elastic-

perfectly plastic matrix. Three types of anisotropic fibers

are taken into account. They are radially orthotropic fibers,

circumferentially orthotropic fibers and transversely iso-

tropic fibers. The material properties of the fibers and

matrices are listed in Table 1 where ROF, COF and TIF

represent a radially orthotropic fiber, a circumferentially

orthotropic fiber and a transversely isotropic fiber, respec-

tively. The material properties of Matrix 1 are from those

of Ti-24Al-11Nb and its yield stress is ry = 371.5 MPa

[19]. The material properties of Matrix 2 are based on those

of polycrystalline NiAl and its yield stress is ry = 1453

MPa [11].

The outer radius of the fiber is taken to be 40 lm and

that of the matrix is 70 lm. A uniform temperature

decrease of –800�C, an externally applied radial stress of

150 MPa and axial stress of –300 MPa are applied on the

composites. Firstly, we consider Matrix 1 in Table 1. The

obtained non-dimensional radial, circumferential and axial

stresses in the fiber are depicted in Figs. 2–4, and those in

matrix in Figs. 5–7. The non-dimensional Tresca’s equiv-

alent stresses in the matrix are given in Fig. 8. In the

figures, ry1 is the yield stress of Matrix 1, the uppercase

letter P means the non-dimensional stresses are from an

elastic-perfectly plastic matrix, and the uppercase letter E

indicates the non-dimensional stresses are from a fully

elastic matrix. For instance, COFP represents the non-

dimensional stresses in the composites comprising a cir-

cumferentially orthotropic fiber and an elastic-perfectly

Table 1 Material properties of

fibers and matrices
Ez (GPa) Eh (GPa) Er (GPa) mzh mzr mhr az(10–6/�C) ah(10–6/�C) ar(10–6/�C)

ROF 480 250 480 0.19 0.25 0.19 2.5 3.3 2.5

COF 480 480 250 0.19 0.25 0.25 2.5 2.5 3.3

TIF 480 250 250 0.19 0.19 0.25 2.5 3.3 3.3

Matrix 1 110.3 110.3 110.3 0.26 0.26 0.26 9 9 9

Matrix 2 167.3 167.3 167.3 0.3 0.3 0.3 13.05 13.05 13.05

kf 1;f 2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
czzchh � czhchz

czzcrr � czrcrz

r

A ¼ crz � chz

czzchh þ czrcrz � czzcrr � czhchz

B ¼ czzchh þ czhcrz � czzcrh � czhchzð Þah þ czzchr þ czrcrz � czzcrr � chzczrð Þar½ �DT
czzchh þ czrcrz � czzcrr � czhchz

ð23Þ
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plastic matrix, and ROFE stands for those in the compos-

ites containing a radially orthotropic fiber and a fully

elastic matrix.

Figure 2 indicates that the compressive radial stresses in

the fiber for the composites reinforced with the three types

of fibers are decreased and the tensile radial stresses are

increased after considering the elastic-perfectly plastic

property of the matrix. Among them, the decrease of the

radial stresses in the fiber for the composites reinforced

with a radially orthotropic fiber is the largest. For different

types of fibers, the radial stress distributions are different.

For the composites reinforced with a transversely isotropic

fiber, the radial stresses in the fiber keep unchanged along

the radial direction. However, they exhibit quite different
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distributions for the composites reinforced with other two

types of fibers. For the composites reinforced with a cir-

cumferentially orthotropic fiber, the radial stresses in the

region around the axis of the fiber are tensile. They drop

when moving away from the axis of the fiber, and become

compressive. For the composites reinforced with a radially

orthotropic fiber, the radial stresses in the fiber are com-

pressive. When moving towards the axis of the fiber, the

compressive radial stresses rise. Especially in the region

close to the axis of the fiber, the compressive radial stresses

go up very fast. The circumferential stress distributions in

the fiber are similar to those of the radial stresses (Fig. 3).

32

22

12

–0.

–0.

–0.

–0.

02

0.08

0.18

0.28

0.38

0.5710 0.6568 0.7426 0.8284 0.9142 1.0000

COFP

COFE

ROFP

ROFE

TIFP

TIFE

1

1

2
2

3

3

4

4
5

6

6 5

s sg / y1

r rm/

Fig. 5 Radial stresses in matrix

of composites (Matrix 1)

0.86

0.96

1.06

1.16

1.26

1.36

1.46

1.56

1.66

1.76

0.5710 0.6568 0.7426 0.8284 0.9142 1.0000

COFP

COFE

ROFP

ROFE

TIFP

TIFE

1

1

2

2

3

3

4

4
5

5

6

6

5
3

1

r rm/

s s/ y1q
Fig. 6 Circumferential stresses

in matrix of composites

(Matrix 1)

0.78

0.83

0.88

0.93

0.5710 0.6568 0.7426 0.8284 0.9142 1.0000

COFP
COFE
ROFP
ROFE
TIFP
TIFE

1

1

2

2

3

3
4

4

5

6

6

5

r rm/

s s/ y1
Z

Fig. 7 Axial stresses in matrix

of composites (Matrix 1)

J Mater Sci (2006) 41:4901–4913 4907

123



For the composites reinforced with a transversely isotropic

fiber, the circumferential stresses in the fiber are almost the

same as the radial stresses. For the composites reinforced

with a circumferentially orthotropic fiber, the radial and

circumferential stresses in a very small region around the

axis of the fiber are also almost the same. However,

accompanying the increase of the radial coordinate, the

circumferential stresses drop more quickly than the radial

stresses. For the composites reinforced with a radially

orthotropic fiber, the circumferential stresses in the fiber

are much smaller than the radial stresses in the region very

close to the axis of the fiber. The axial stresses in the fiber

for the composites reinforced with the three types of fibers

are always independent of the radial coordinate (Fig. 4).

After the matrix partially yields, its restraint on the

deformation of the fiber is weakened leading to smaller

compressive axial stresses than those from the fully elastic

matrix. The decreases of the axial stresses for the com-

posites reinforced with circumferentially and radially

orthotropic fibers are basically the same which are bigger

than the reduction of the axial stresses in the fiber for the

composites reinforced with a transversely isotropic fiber.

The compressive radial stresses in the matrix for the

composites reinforced with circumferentially and radially

orthotropic fibers are almost the same which are bigger

than those for the composites reinforced with a transversely

isotropic fiber (Fig. 5). All the radial stresses gradually

change from the compressive ones at the interface between

the fiber and matrix to the externally applied tensile radial

stress at the outer radius of the matrix. After taking into

account the elastic-perfectly plastic property of the matrix,

the compressive radial stresses are decreased and the

tensile radial stresses are increased obviously. The differ-

ences between the fully elastic and elastic-perfectly plastic

ones become smaller and smaller along with the increase of

the radial coordinate and disappear at the outer radius of

the matrix. Without considering the elastic-perfectly plastic

property of the matrix, the circumferential stresses for

composites reinforced with circumferentially and radially

orthotropic fibers are also very close and bigger than the

circumferential stress in the composites reinforced with a

transversely isotropic fiber (Fig. 6). All the circumferential

stresses are the largest at the inner radius of the matrix.

Then they drop along with the increase of the radial

coordinate and reach their minimum values at the outer

radius of the matrix. After taking into account the effect of

the elastic-perfectly plastic property of the matrix, the

circumferential stress distributions in the matrix are totally

changed. At first, they go up from their minimum values at

the inner radius of the matrix and reach their maximum

values in some radial positions in the matrix. Then they go

down until reaching the outer radius of the matrix. Such a

variety of the circumferential stresses can be explained

with Tresca’s yield criterion. For the composites subjected

to the above temperature change and externally applied

radial and axial loads, the circumferential stress in the

matrix is the largest and radial stress is the smallest.

Therefore, Tresca’s yield criterion for this stress state is

rh–rr = ry. At the inner radius of the matrix, the radial

stresses are compressive and the largest for the composites

reinforced with the three types of fibers. Since the yield

stress ry of the matrix is a constant, in order to satisfy the

Tresca’s yield criterion, the circumferential stresses must

be the smallest. As the radial coordinate increases, the

compressive radial stresses drop. Accordingly, the cir-

cumferential stresses increase. At the interfaces between

the elastic and plastic regions of the matrix, the circum-

ferential stresses reach their maximum values. Then, they

decrease until reaching the outer radius of the matrix. Since

Young’s modulus of the matrix is far lower than Young’

moduli of the fiber, the tensile axial stresses in the matrix

are much smaller than the compressive axial stresses in the

fiber. Like the axial stresses in the fiber, the axial stresses in

the matrix are also independent of the radial coordinate

(Fig. 7). After incorporating the elastic-perfectly plastic

property of the matrix, the tensile axial stresses in the
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matrix are also greatly lowered. Once again, the decreases

of the axial stresses in the matrix for the composites rein-

forced with circumferentially and radially orthotropic

fibers are almost the same and bigger than the reduction of

the axial stresses for the composites reinforced with a

transversely isotropic fiber.

Figure 8 gives the varieties of non-dimensional Tresca’s

equivalent stresses re/ry1=(rmax–rmin)/ry1 in the matrix.

When the matrix is fully elastic, Tresca’s equivalent

stresses are the largest at the inner radius of the matrix for

the composites reinforced with the three types of fibers. As

the radial coordinate rises, they drop and reach their min-

imum values at the outer radius of the matrix. Also,

Tresca’s equivalent stresses for the composites reinforced

with circumferentially and radially orthotropic fibers are

basically identical and larger than Tresca’s equivalent

stress for the composites reinforced with a transversely

isotropic fiber. After considering the elastic-perfectly

plastic property of the matrix, the yielding firstly occurs at

the inner radius of the matrix and Tresca’s equivalent

stresses are equal to the yield stress of the matrix. After

that, Tresca’s equivalent stresses keep unchanged until the

difference between the maximum and minimum stresses is

less than the yield stress of the matrix. Therefore, in the

plastic region of the matrix, Tresca’s equivalent stresses for

the composites reinforced with the three types of fibers are

the same and independent of the radial coordinate as

demonstrated in Fig. 8. However, after moving into the

elastic region of the matrix, only Tresca’s equivalent

stresses for the composites reinforced with circumferen-

tially and radially orthotropic fibers are almost the same.

Tresca’s equivalent stress for the composites reinforced

with a transversely isotropic fiber is changed to a smaller

value. Then, all of them decrease along the radial direction

and reach their minimum values at the outer radius of the

matrix.

In the following, we examine how different matrix

materials affect the thermomechanical response of the

composites reinforced with anisotropic fibers. For doing

this, we change the matrix material from Matrix 1 to

Matrix 2 in Table 1 and still keep the fiber material

unchanged. Since Young’s modulus and yield stress of

Matrix 2 are far higher than those of Matrix 1, Matrix 2 is

stronger than Matrix 1. Using the same thermomechanical

loads, the obtained non-dimensional radial, circumferential

and axial stresses in the fiber are given in Figs. 9–11, those

in the matrix in Figs. 12–14, and non-dimensional Tresca’s

equivalent stresses in the matrix are shown in Fig. 15. In all

the figures, the capital letter W indicates the composites

contain the weaker matrix, i. e., Matrix 1 and S means the

composites comprise the stronger matrix, i. e., Matrix 2.

For example, ROFPW represents the non-dimensional

elastic–plastic stresses in the composites comprising a

radially orthotropic fiber and the weaker matrix. And

TIFPS stands for those in the composites containing a

transversely isotropic fiber and the stronger matrix.

From the stress distributions in the fibers given by

Figs. 9–11, it is clear that the stronger Matrix 2 greatly

raises all the compressive stresses in the fibers. The radial

stress in the fiber for the composites reinforced with a

circumferentially orthotropic fiber is still tensile within a

very small region around the axis of the fiber (Fig. 9).

Then, it becomes compressive and increases more quickly

than that caused by Matrix 1 when moving away from the

axis of the fiber. At the outer radius of the fiber, the

compressive radial stress reaches its maximum value. For

the composites reinforced with a transversely isotropic

fiber, the compressive radial stress in the fiber caused by

Matrix 2 also keeps constant. However, it is much bigger

than that caused by Matrix 1. The most obvious change is

from the composites reinforced with a radially orthotropic

fiber. For such composites, the difference of the radial
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stresses caused by Matrix 2 and Matrix 1 is the largest

among all the composites. When moving towards the axis

of the fiber, the radial stresses become bigger and bigger.

At the position very close to the axis of the fiber, the radial

stress caused by the stronger matrix is about 240% of that

caused by the weaker matrix. The circumferential stress

distributions in the fiber for the composites reinforced with

the three types of fibers are similar to the radial stress

distributions (Fig. 10). For the composites reinforced with

a circumferentially orthotropic fiber, the difference of the

circumferential stresses caused by the stronger matrix and

weaker matrix becomes larger and larger relative to that of
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the radial stresses when moving towards the outer radius of

the fiber. Oppositely, this difference for the composites

reinforced with a radially orthotropic fiber becomes smaller

and smaller. At the same position very close to the axis of

the fiber, the circumferential stress caused by the stronger

matrix is still about 240% of that caused by the weaker

matrix. Different from the above two cases, the differences

of radial and circumferential stresses caused by the two

different matrices are basically the same for the composites

reinforced with a transversely isotropic fiber. The changes

of the compressive axial stresses in the fiber for the com-

posites reinforced with the three types of fibers are similar
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after using the stronger matrix (Fig. 11). Compared to

those from the weaker matrix, the compressive axial

stresses in the fiber from the stronger matrix are increased

by about 60% for the composites reinforced with the three

types of fibers.

The obvious increase of all the compressive stresses in

the fiber can be explained with the material properties of the

matrix. Firstly, the thermal expansion coefficients of Matrix

2 and Matrix 1 are 13.05 · 10–6/�C and 9 · 10–6/�C,

respectively. Therefore, thermal deformation difference

between the fiber and matrix caused by the stronger matrix

is bigger than that caused by the weaker matrix. Next,

Young’s moduli of Matrix 2 and Matrix 1 are 167.3 GPa

and 110.3 GPa, respectively. The higher Young’s modulus

applies a stronger restraint on the deformation of the fiber

leading to higher compressive stresses in the fiber. Finally,

the yield stress of the stronger matrix is much bigger than

that of the weaker matrix. Therefore, the plastic deforma-

tion of the stronger matrix is more difficult to occur than

the weaker matrix resulting in larger compressive stresses

in the fiber.

Similar to the increase of the compressive radial stresses

in the fiber, the compressive radial stresses in the matrix

are also greatly raised after the application of the stronger

matrix (Fig. 12). At the inner radius of the matrix, the

differences of the compressive radial stresses between the

two different matrices are the largest. For the composites

reinforced with the three types of fibers, the compressive

radial stresses caused by the stronger matrix are about 11

times of those caused by the weaker matrix. When moving

along the radial direction, they drop and become the

externally applied tensile radial stress at the outer radius of

the matrix. Once again, the radial stresses for the com-

posites reinforced with radially and circumferentially

orthotropic fibers are very close and bigger than those

from a transversely isotropic fiber. Similarly, the tensile

circumferential stresses in the matrix are greatly increased

as well after introducing the stronger matrix (Fig. 13). At

the inner radius of the matrix, the tensile circumferential

stresses caused by the stronger matrix are about three times

of those caused by the weaker matrix. Due to the same

reason, the largest compressive radial stresses at the inner

radius of the matrix result in the small tensile circumfer-

ential stresses at this position for both matrices according

to Tresca’s yield criterion. Then, along with the decrease of

the compressive radial stresses, the tensile circumferential

stresses increase and reach their maximum values at

the interfaces between the elastic and plastic regions of the

matrix. After that, they drop along with the increase of the

radial coordinate. Compared to the increases of the radial

and circumferential stresses at the inner radius of the

matrix after the introduction of the stronger matrix, the

increase of the axial stresses in the matrix is the smallest

(Fig. 14). They are only raised by about 160% after

employing the stronger matrix. Unlike the radial and cir-

cumferential stresses in the matrix which are very close for

the composites reinforced with radially and circumferen-

tially orthotropic fibers, such a closeness of the axial

stresses is changed to the composites reinforced with cir-

cumferentially orthotropic and transversely isotropic fibers.

Since Matrix 2 is much stronger than Matrix 1, Matrix 2

has a bigger capacity to carry loads. Therefore, the plastic

region of Matrix 2 is far smaller than that of Matrix 1. This

can be seen from Fig. 15 where the elastic–plastic inter-

faces for the composites comprising Matrix 1 and the three

types of fibers are at about r ¼ 55 lm, but they are

changed to about r ¼ 45 lm for the composites containing

Matrix 2 and the same types of fibers. Like Matrix 1, in the

region around the inner radius of the matrix, the stronger

matrix also plastically yields. Tresca’s equivalent stresses

for the composites reinforced with the three types of fibers

are the same and equal to the yield stress of Matrix 2. They

keep unchanged until the matrix becomes elastic. Then, the

matrix for the composites reinforced with a transversely

isotropic fiber firstly leaves the plastic region resulting in

a lower Tresca’s equivalent stress than those from the

composites reinforced with radially and circumferentially

orthotropic fibers. Accompanying the further increase of

the radial coordinate, all the Tresca’s equivalent stresses go

down and reach their minimum values at the outer radius of

the matrix.

As pointed out by Avery and Herakovich [16] and

indicated by Figs. 2, 3, 9 and 10, the circumferential and

radial stresses at the center of radially orthotropic fibers are

singular. For such fibers with Young’s moduli and Pois-

son’s ratios given in Table 1, kf1 and kf2 are less than unity.

According to the first two of Eq. (22), the radial and cir-

cumferential stresses become singular at r = 0 since kf1 – 1

and kf2 – 1 are negative.

Conclusions

In this paper, an analytical approach has been developed to

tackle the thermomechanical analysis of the composites

consisting of anisotropic fibers and an elastic-perfectly

plastic matrix. With the developed method, the deforma-

tions and stresses in the composites subjected to axisym-

metric thermomechanical loads can be described with

analytical formulae.

The effect of the elastic-perfectly plastic property of

the matrix on the thermomechanical stresses in the com-

posites reinforced with circumferentially orthotropic,

radially orthotropic and transversely isotropic fibers is

investigated. For the composite systems and the thermo-

mechanical loads given in this paper, the elastic-perfectly
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plastic property of the matrix reduces the compressive

stresses in the fiber and the tensile circumferential and

axial stresses in the matrix.

How different matrix materials affect the thermome-

chanical stresses in the composites has also been examined.

By replacing a weaker matrix with a stronger matrix which

has a higher thermal expansion coefficient, Young’s mod-

ulus and Poisson’s ratio, we found that the compressive

stresses in the fiber and the tensile circumferential and axial

stresses in the matrix are greatly increased. In addition, the

plastic region of the matrix is obviously reduced. It indi-

cates that a strong matrix can raise the load-carrying

capacity of the composites. However, on the other hand,

the increase of the stresses in the fiber raises the risk of the

fiber failure.
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